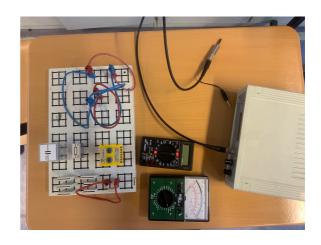
P4

Experimentierpraktikum Wechselstromwiderstand eines Kondensators

Messen Sie die Frequenzabhängigkeit des Wechselstromwiderstandes eines Kondensators.

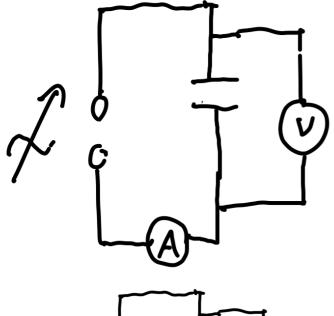


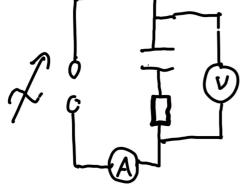
Aufgabenstellung:

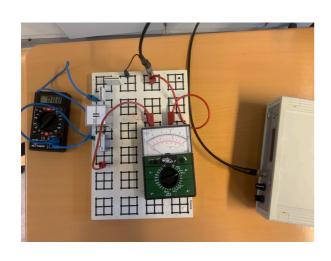
- Bestimmen Sie den Wechselstromwiderstand eines Kondensator in Abhängigkeit von der Frequenz.
- Wiederholen Sie den Versuch für verschiedene Kondensatoren.
- · Vergleichen Sie mit den theoretisch zu erwartenden Werten.
- * Schalten Sie zum Kondensator einen Widerstand in Reihe und messen Sie erneut. Vergleichen Sie auch hier die zu erwartenden Werte.
- * Schalten Sie zum Kondensator eine Spule in Reihe und messen Sie erneut. Vergleichen Sie auch hier die zu erwartenden Werte.

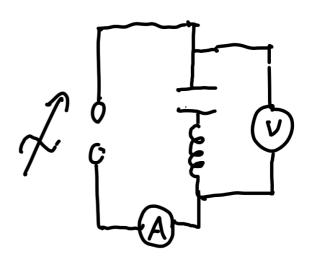
Material

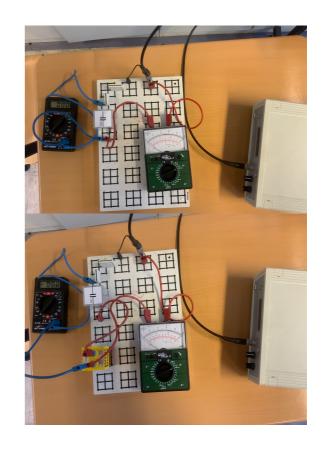
- Frequenzgenerator
- mehrere Kondensatoren (47 μF und 10 μF)
- Steckbrett
- Voltmeter und Amperemeter
- Kabel




Beachten Sie folgende Schritte:


- Erstellen Sie eine Schaltskizze KONTROLLE DURCH LoL!
- Schreiben Sie eine kurze Durchführung, aus der hervorgeht, welche Größen Sie einstellen bzw. messen.
- Entwerfen Sie eine geeignete Messtabelle.
- Bauen Sie den Versuch auf. KONTROLLE DURCH LoL!
- Führen Sie die Messung durch und notieren Sie die Messwerte. KONTROLLE DURCH LoL!
- Werten sie ggf. die Messwerte wie in der Aufgabenstellung gefordert aus.
- · Notieren Sie ein Ergebnis.




Schaltskizze:

Durchführung:

Ich messe den Strom und die Spannung bei verschiedenen Frequenzen. Daraus berechne ich den Widerstand R = U/I Dieser wird mit den theoretisch zu erwartenden Werten verglichen.

Zu den Rechnungen:

Den kapazitativen Widerstand erhalte ich auf theoretischem Wege durch:

$$R_C = \frac{1}{\omega C}$$

Den induktiven Widerstand erhalte ich aus:

$$R_L = \omega L$$

Den Gesamtwiderstand aus Spule, Kondensator und Ohrmuscheln Widerstand erhalte ich aus:

$$R_{ges} = \sqrt{R_{ohm}^2 + (R_L - R_C)^2}$$

Messung: $C = 47 \mu F$

f in Hz	U in V	I in mA	R in Ohm	R_th in Ohm
20	1,1	7	157,14	169
30	1,05	11	95	112
40	1,0	14	71	84
50	0,5	18	47	68
60	0,8	20	40	56
70	0,75	22	43	48
80	0,65	24	27	42
90	0,55	25	21	37
100	0,5	26	19	34
110	0,45	28	16	30
120	0,4	28	14	28
130	0,35	29	12	26
140	0,35	30	12	24
150	0,3	30	10	22,5
160	0.25	31	8	21
170	0,25	32	8	20
180	0,2	32	6	19

C = 10 μF

f in Hz	U in V	I in mA	R in Ohm	R_th in Ohm
20	1,5	10	150	144
30	1,4	14	100	96
40	1,3	16	81,25	72
50	1,22	19	64,2	58
60	1,15	21	54,7	48
70	1,15	23	50	40
80	1,05	24	43,75	36
90	1	26	38,5	29,6
100	0,85	27	31,5	28,8
110	0,82	28	29,3	25,6
120	0,8	28,4	28,2	24
130	0,75	28,7	26,1	22
140	0,7	29	24,1	20,4

Die Ergebnisse entsprechen gut den theoretischen Werten.

 $C = 10 \, \mu F$ $R = 100 \, \Omega$

f in Hz	U in V	I in mA	R in Ohm	R_th in
				Ohm
20	1,5	2	750	802
30	1,45	3	483,3	540
40	1,4	4	350	410
50	1,355	5	271	334
60	1,3	5,2	250	283,5
70	1,25	6	208,3	248
80	1,2	6,8	176,5	223
90	1,15	7,2	159,7	203
100	1,1	7,6	144,7	188
110	1,05	8	131,25	176
120	1	8,2	122	166
130	0,95	8,4	113,1	158
140	0,9	8,6	104,6	151

Die Ergebnisse sind durchgehend zu niedrig, folgen aber dem zu erwartenden Verlauf.

 $C = 10 \mu F L=3mH$ Siebkette

f in Hz	U in V	I in mA	R in Ohm	R_th in
				Ohm
50	1,55	6,2	250	320
100	1,45	10	145	160
150	1,35	16	84,4	103
200	1,2	20	60	76
250	1,05	23	45,6	59
300	0,95	26	36,5	47,4
350	0,75	29	25,9	38,9
400	0,65	30	21,7	32,2
450	0,55	31	17,7	26,9
500	0,45	32	22,5	22,4
550	0,35	34	10,3	18,6
600	0,25	34	7,4	15,2
700	0,15	35	4,3	9,5
800	0	35	0	4,8
900	0	35	0	0,72
1000	0	35	0	2,9
1100	0,05	35	1,4	6,3
1200	0,15	34	4,4	9,3
1300	0,25	34	7,4	12,3
1400	0,3	34	8,8	15
1500	0,35	33	10,6	17,7
1600	0,45	32	14,1	20,2
1700	0,55	31	17,7	22,7
1800	0,6	31	19,35	25

Ergebnis:Die Messwerte stimmen gut mit den zu erwartenden Werten überein.